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Abstract

We study a generalization of the M/G/1 system (denoted by rM/G/1) with inde-

pendent and identically distributed (iid) service times and with an arrival process whose

arrival rate λ0f(r) depends on the remaining service time r of the current customer

being served. We derive a natural stability condition and provide a stationary analysis

under it both at service completion times (of the queue length process) and in continuous

time (of the queue length and the residual service time). In particular, we show that

the stationary measure of queue length at service completion times is equal to that of a

corresponding M/G/1 system. For f > 0 we show that the continuous time stationary

measure of the rM/G/1 system is linked to the M/G/1 system via a time change. As

opposed to the M/G/1 queue, the stationary measure of queue length of the rM/G/1

system at service completions differs from its marginal distribution under the continuous

time stationary measure. Thus, in general, arrivals of the rM/G/1 system do not see

time averages. We derive formulas for the average queue length, probability of an empty

system and average waiting time under the continuous time stationary measure. We

provide examples showing the effect of changing the reshaping function on the average

waiting time.
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1 Introduction

The goal of the present note is the steady state analysis of a single server queueing system

with iid service times and an arrival process whose rate is a function of the remaining service

time of the current customer being served, if the server is busy, or a constant λ0 otherwise.

This is a generalization of the M/G/1 system. Because the arrival rate is allowed to depend

on the remaining service time we will denote it by the notation ‘rM/G/1.′ Arrival processes

with remaining service time dependent rates can be used to model systems where customers

can directly estimate the remaining service time by observing the amount of work that a

server has to treat and use this information to decide whether to join the queue or not.

This type of behavior occurs, for example, at checkout queues in supermarkets. A potential

application area for rM/ · /· systems is call centers [1, 7] with inbound and outbound calls.

Modern call centers call out customers to connect them with a server even when all servers

are busy [17]; the decision to initiate an outbound call can use estimates of the remaining

service time of the busy servers. New approaches to call center modeling also allow the

control of the arrival process of inbound calls by postponing their routing to an agent or

by giving incentives to callback later [13]; such approaches can make use of estimates of the

remaining service time of servers. Generalizations of the rM/G/1 model may be useful in

the analysis of these systems.

Queues with queue-length dependent and Markov modulated arrival or service time dis-

tributions have been studied in the literature, see, e.g., [6, 4, 12, 18]. The only works we are

aware of allowing the arrival rate to depend on the remaining service time are [9, 10, 11];

these works study the remaining service time process (denoted by U(t) in these works) when

the arrival rate and the service rate of the arriving customer depends on U ([10, 11] further

contain two state Markov modulation whose transition rates depend on U). The analysis

method used in these works is asymptotic approximation as arrival, service and transition

rates are scaled by a parameter whose value is sent to ∞. In the current work, we study,

within a narrower framework, the joint queue length and remaining service time distribution

and our focus is on finding exact solutions.
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To simplify exposition, we assume that the iid service times have a density, denoted by

g(·). We further comment on this assumption in Section 6. The arrival process of customers

is Poisson with constant arrival rate λ0 if the system is empty or λ0f(r) if the server is busy

and the remaining service time of the customer being served is r. In the particular case

where f(r) = 1 for r ≥ 0, the system reduces to an M/G/1 queue. f can be interpreted

in two ways: if f(r) ∈ (0, 1), r ∈ R+, then f(r) can be thought of as the probability that

an arriving customer joins the queue after having observed the remaining service time r.

f can also be thought of as a control parameter that transforms / reshapes, the constant

arrival rate λ0 to optimize system performance. With this interpretation in mind, we will

refer to f as the “reshaping function” (the ‘r’ in the abbreviation rM/G/1 refers also to

“reshaping” of the arrival process). For the latter interpretation, a natural condition on a

reshape function is that it doesn’t change the overall average arrival rate to the system. In

Proposition 10 of Subsection 4.2 the average arrival rate to an rM/G/1 system is computed to

be α = λ0
1−λ0(ν̄−ν) , where ν =

∫∞
0 rg(r)dr is the average service length and ν̄ =

∫∞
0 F (r)g(r)dr

with F (r) =
∫ r
0 f(u)du. Thus, under the assumption

ν = ν̄ (1)

the average arrival rate of an rM/G/1 system remains λ0. This assumption will be in force

in Section 5 where we compare the average waiting times of a range of rM/G/1 systems

with the same service time distribution and average arrival rate λ0 but different reshape

functions.

A natural framework for the study of the rM/G/1 queue is the piecewise deterministic

processes (PDP) of [5]. Section 2 gives a construction of the rM/G/1 process as a piecewise

deterministic Markov process based on this framework. The process is Xt = (Nt, Rt); its first

component represents the number of customers (i.e., queue length, including the customer

being served) in the system the second component represents the remaining service time.

Subsection 2.1 gives its generator and Subsection 2.2 derives the dynamics of the embedded

random walk N , which is the sequence of queue lengths observed at service completion

times; Proposition 2 shows that the dynamics of N equals that of the embedded random

walk (at service completion times) of an M/G/1 queue (whose state process is denoted

by X̄) with constant arrival rate λ0 and with iid service times {σ̄k, k = 1, 2, 3, } where

3



σ̄k = F (σk), and {σk} are the iid service times of the original rM/G/1 system. The stationary

distribution of the rM/G/1 system at service completions (and arrivals) follows from this

reduction; the details are given in Section 3. Proposition 3 derives the stability condition

ρ
.
= λ0ν̄ < 1, (15) gives the expected stationary queue length at service completions and (16)

gives the stationary moment generating function of the queue length distribution at service

completions.

As opposed to M/G/1 queues, the stationary distribution of queue length of an rM/G/1

system in continuous time does not equal its stationary distribution at service completions;

therefore, for rM/G/1 queues, the continuous time stationary distribution and service mea-

sures based on it must be computed directly. Section 4 begins with the statement and

recursive solution of the balance equation for the stationary distribution of the continuous

time process X, which consists essentially of a sequence of linear ordinary differential equa-

tions (ODE) where f serves as an r dependent coefficient. Proposition 8 proves that the

solution of the balance equation is indeed the stationary measure of the process X under

the stability assumption ρ < 1. The proof is based on the PDP framework of [5]. A number

of further computations based on the continuous time stationary distribution is given in

Section 4; in particular, Corollary 2 gives a simple formula for the stationary probability

of an empty rM/G/1 system in continuous time and Proposition 9 gives a formula for the

stationary expected queue length in continuous time. Proposition 10 of Subsection 4.2 gives

the average arrival rate for the rM/G/1 system and finally (64) gives an explicit formula

for the average sojourn time of a customer in an rM/G/1 system. In general, f may take

the value 0 and this may make F noninvertible. For this reason, there is not, in general, a

bijective correspondence between the continuous time stationary distribution of the rM/G/1

process X and that of the M/G/1 process X̄. However, for f > 0 a bijective correspondence

can be established; this is treated in Subsection 4.4.

Section 5 gives two examples showing the impact of reshaping the arrival process on the

average waiting time. We observe, as expected, that, for a given average arrival rate, the

closer the customers arrive to the end of a service the shorter will be the average waiting

time in the system. Section 6 points out directions for future research.

4



2 Dynamics of the process

The theory of piecewise-deterministic Markov Processes (PDP) of [5] provides the ideal

mathematical framework for the analysis of the rM/G/1 queue. For the definition of the

process we will use the PDP definition given in [5, page 57], which uses the following elements

(all adopted from [5]): the state space of the process will be

E
.
=

∞∪
k=0

Ek, E0 = B(0, δ) ⊂ R2, Ek
.
= {k} × R+ = {(k, r), r > 0}, k ∈ {1, 2, 3, ...},

where 0 = (0, 0) ∈ R2 denotes the origin of R2 and B(0, δ) denotes an open ball of radius

δ < 1; 0 represents the empty system (in [5] the letter ζ denotes the second component of

x ∈ E, we use r for the same purpose). The rM/G/1 process, Xt = (Nt, Rt) ∈ E, t ≥ 0, will

evolve, on each Ek smoothly following the vector field Xk : Ek 7→ R2

Xk(x)
.
=


(0,−1), k > 0,

0, otherwise,

until it jumps. Let us denote the jump times of X by the sequence {Ti, i = 1, 2, 3, ...}. The

vector field Xk defines the following trivial flow

ϕ(t, (k, r)) = (k, r − t), k > 0, ϕ(t,0) = 0; (2)

the process X follows this flow in between its jumps:

Xt = (NTk
, ϕ(t,XTk

)) = (NTk
, RTk

− (t− Tk)), Tk < t < Tk+1. (3)

For A ⊂ R2, let ∂A denote its boundary in the Euclidian topology. The exit boundary of

the process is

Γ∗ .
= ∪∞

k=0∂Ek = ∂B(0, δ) ∪ (∪∞
k=1{(k, 0), k > 0}) .

For x = (k, r) ∈ E, define (following [5, page 57]) t∗(x)
.
= inf{t > 0, ϕk(t, r) ∈ ∂Ek} where

we use the convention that the infimum of the empty set is empty; t∗(x) is the time when

X reaches Γ∗ if it doesn’t doesn’t jump until this happens. By definition ((2) and (3)) X
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moves with unit speed toward the k-axis on each Ek, k > 0, therefore,

t∗(x) = r, x = (k, r) ∈ E, k > 0.

For k = 0, the process remains constant 0 until an arrival occurs, which implies t∗(0) = ∞.

Figure 1 shows an example sample path of X; the horizontal axis is the k-axis, showing the

number of customers in the system and the vertical axis is the r-axis, showing the remaining

service time of the current customer in service. The dynamics (3) means that X travels with

unit speed toward the k-axis in between its jumps. Two types of jumps are possible: either

an arrival, which are jumps to the right or a service completion, which are jumps to the left

occurring when X hits the k-axis.

The jump dynamics are specified by the rate function λ : E → R+ and the transition

measure Q. For the rM/G/1 system the jump rate function will be

λ(k, r)
.
=


λ0f(r), k > 0,

λ0, k = 0.

The transition measure Q(·, x), x ∈ E∪Γ∗ for the rM/G/1 system will be as follows: Q(·, x)

is the Dirac measure on (k + 1, r) for x = (k, r), k > 0 and r > 0 (represents an arrival to

the busy system). For (k, 0) ∈ Γ∗, k > 0, Q(·, x) is the measure g(r)dr on Ek−1 (represents

the completion of a service and the start of another, this is exactly when the sample path

X hits the k-axis in Figure 1); Q(·,0) is the measure g(r)dr on E1 (represents an arrival to

the empty system).

2.1 Generator of X

Let E denote the σ-algebra of Borel-measurable subsets of E. Let {Tn, n = 1, 2, 3, ..} denote

the jump times of X. For h : E × R+ × Ω 7→ R, h measurable, one writes h ∈ L1(X) if

E

[ ∞∑
i=1

|h(XTi , Ti, ω)|

]
<∞

and h ∈ Lloc
1 (X) if h1{t<σn} ∈ L1(X) for a sequence of stopping times σn ↗ ∞. The

characterization of the generator of X given in the next paragraph uses these definitions.

The generator of any PDP process is derived explicitly in [5, Theorem (26.14), page 69];
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E1 E2 E3 E4 E5

Xt

0
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k

Figure 1: The state space and a sample path of X

for the rM/G/1 process X, it is given by the following operator:

Ah(x) =


− d

drh(x) + λ0f(r) (h(k + 1, r)− h(k, r)) , x = (k, r), k, r > 0,

+λ0g(r)(h(1, r)− h(0)), x = 0,

where h ∈ D(A), the domain of A, consisting of measurable functions h on E∪Γ∗ satisfying:

1. for each k > 0, h(k, ·) is absolutely continuous on R+,

2. h(k, 0) =
∫
h(k, r)g(r)dr, k > 0 and

3. Bh ∈ Lloc
1 (X) where Bh is the process t 7→ (h(X0)− h(Xt−)).

2.2 Embedded random walk at service completion times

Let Sk denote1 the sequence of service completion times

S1
.
= inf{t : Xt− ∈ Γ∗}, Sn

.
= inf{t > Sn−1, Xt− ∈ Γ∗}, n > 1,

and define the process (Nn,Rn)
.
= XSn , the state of the system right after service comple-

tions. Let

p(k, λ) =
e−λλk

k!
, k = 0, 1, 2, 3, ...

1In [5], Sk denotes the inter-jump times of the PDP, here they denote the successive times when the process
hits the boundary of its state space.
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denote the Poisson distribution with rate λ and define

F (r)
.
=

∫ r

0
f(r − u)du =

∫ r

0
f(u)du.

Proposition 1. The process {(Nn,Rn), n = 1, 2, 3, ...} is a Markov chain with transition

probabilities

P (Nn+1 −Nn = j|Nn,Rn) =


p(j + 1, F (Rn)), Nn > 0,

p(j, F (Rn)), Nn = 0

(4)

P (Rn+1 ∈ A|Nn+1) =


δ0(A), Nn+1 = 0,∫
A g(r)dr, Nn+1 > 0,

(5)

where δ0 denotes the Dirac measure on 0.

Proof. The definition of the process X (or its strong Markov property) implies that (N ,R)

is a Markov chain. The jump distribution Q determines where X jumps after it hits Γ∗: X

jumps to (NSn− − 1, σn) where σn has density g, if NSn− > 1 or it jumps to 0 = (0, 0) if

NSn− = 0. This gives (5). To compute the conditional density of Nn+1 given (Nn,Rn) it

suffices to compute that of

Nn+1 −Nn = (NSn+1 −NSn+1−) + (NSn+1− −NSn). (6)

By the strong Markov property of X, the conditional distribution of NSn+1− − NSn given

(Nn,Rn) is the same as that of NS1− − N0 given (N0, R0). The two cases (N0, R0) = 0

and N0, R0 > 0 are treated separately. Let us start with the latter: conditioned on (X0 =

(N0, R0) = x = (k, r)), k > 0, the dynamics of X imply the following: S1 = t∗(x) = r,

and Rt = r − t for t ∈ [0, r). In the same time interval the N process is Poisson with time

dependent rate λ0f(r − t). Therefore, conditioned on X0 = (k, r), k > 0, NS1− − N0 has

Poisson distribution with rate F (r). Furthermore, for k > 0, one has NS1− > 0 and therefore,

once again by the definition of the jump dynamics of X, NS1−NS1− = −1 (i.e., the customer

whose service has just finished leaves the system). These and (6) imply

P (Nn+1 −Nn = j|Nn,Rn) = p(j + 1, F (Rn)),Nn > 0. (7)

8



The argument for the case X0 = 0 is parallel and gives

P (Nn+1 −Nn = j|(Nn,Rn) = 0) = p(j, F (Rτ ′n)) (8)

where τ ′n is the first jump time of R after Sn. For (Nn,Rn) = 0, τ ′n will be a jump from

state 0 (i.e., an arrival to the empty system) and by X’s definition Rτ ′n ’s density, given the

whole history of (N ,R), will again be g. This, (7) and (8) imply (4).

The process N itself is a Markov chain:

Proposition 2. N is a Markov chain with transition matrix

M =


p(0) p(1) p(2) p(3) p(4) · · ·

p(0) p(1) p(2) p(3) p(4) · · ·

0 p(0) p(1) p(2) p(3) · · ·

0 0
. . .

. . .
. . .

. . .

 , (9)

where

p(j)
.
=

∫ ∞

0
p(j, λ0F (r))g(r)dr. (10)

Proof. The conditional distributions (4), (5) and the Markov property of the process {(Nn,Rn)},

imply that {Nn, n = 0, 1, 2, 3, ..} is a Markov chain; the distribution of its increments

∆Nn = Nn+1 −Nn are

P (∆Nn = j|Nn) = E[E[(1Nn=j |Nn, Rn)]Nn] =


p(j + 1), Nn > 0,

p(j), Nn = 0,

(11)

This implies that M of (9) is the transition matrix of N .

We now note the first connection between rM/G/1 and M/G/1 systems. That {σi} is

an iid sequence implies the same for σ̄i
.
= F (σi). Then one can write (10) as

p(j) = E[p(j, λ0σ̄1)], j = 0, 1, 2, 3, , ...

and, by [16, Proposition 3.3.2, page 57], these are exactly the transition probabilities of the

embedded random walk (at service completion times) of an M/G/1 system with constant
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rate λ0 and iid service time sequence {σ̄i, i = 1, 2, 3, ..}:

Corollary 1. The dynamics at service completion times of the rM/G/1 system with arrival

rate λ0f(·) and iid sequence of service times {σi, i = 1, 2, 3, ...} is identical to the dynamics at

service completion times of an M/G/1 system with constant arrival rate λ0 and iid sequence

of service times {σ̄i = F (σi), i = 1, 2, 3, ...}.

The next section computes the stationary distribution of N under a natural stability

assumption; before we move on, let us make the following observation:

Remark 1. Let Et denote the elapsed service time since the beginning of current service. If

we replace the arrival rate from λ0f(Rt) with λ0f(Et), conditioned on Rn = r, the number of

arrivals between the nth service completion and (n+1)st completion will be a Poisson random

variable with rate λ0
∫ r
0 f(u)du, i.e., the same as that of the rM/G/1 system; therefore, the

transition matrix M of the embedded walk N remains unchanged if we replace the arrival

rate λ0f(Rt) with λ0f(Et). This implies that all of our computations concerning N above

and in Section 3 below remain unchanged if the arrival rate process is changed from λ0f(Rt)

to λ0f(Et).

3 Stationary distribution at service completions or arrival

times

A measure q is the stationary measure of N if and only if it satisfies

q = qM. (12)

We have seen in Corollary 1 that the dynamics of the rM/G/1 system at service completion

times is identical to that of the M/G/1 system with constant arrival λ0 and service times

{σ̄i = F (σi)}, therefore (12) is also the balance equation of this M/G/1 system at its service

completion times. The well known solution of this system is (see, e.g., [16, page 238] or [2,

page 281])

q(j) = q(0)p̄(j − 1) +

j−1∑
i=1

q(i)p̄(j − i), j = 1, 2, 3, ... (13)

where p̄(j)
.
=
∑∞

i=j+1 p(j). In particular, a (possibly degenerate) invariant distribution always

exists and is uniquely defined as soon as q(0) is fixed. By definition q is nondegenarate if

10



and only if
∑∞

i=1 q(i) < ∞, i.e., if q is a finite measure on N. [16, Proposition 10.3.1, page

239] gives precisely the condition for this to hold:

Proposition 3. q of (13) defines a finite measure if and only if −1+
∑

n np(n) < 0, i.e., if

ρ
.
= λ0ν̄ = λ0E[σ̄i] = λ0E[F (σi)] = λ0

∫ ∞

0
F (r)g(r)dr < 1. (14)

Then, under the stability condition (14), q(0) can be chosen so that
∑∞

i=0 q(i) = 1. and,

with this choice, q will be the unique stationary measure of the process N . To determine the

value of q(0) for which q is a proper probability measure, following [16, page 239], one sums

both sides of (13) to get
∞∑
j=1

q(j) = q(0)
ρ

1− ρ
;

then, for
∑∞

i=0 q(i) = 1 we must have

q(0) = 1− ρ.

In the rest of this article, we will take q(0) = 1− ρ whenever the stability assumption (14) is

made. Under these assumptions q(0) is the stationary limit probability of an empty rM/G/1

queue right after service completions:

Proposition 4. The distribution of Nn converges in total variation norm to q. In particular,

lim
n→∞

P (Nn = 0) = q(0) = 1− ρ = 1− λE[F (σ1)] = 1− λ0

∫ ∞

0
F (r)g(r)dr.

Proof. That q is the stationary distribution of N follows from (12). N is strongly aperiodic;

by [16, Proposition 10.3.1] it is positive when (14) holds. The convergence in total variation

norm follows from these and [16, Theorem 13.3.1].

By Corollary 1, all results/computations for theM/G/1 queue at service completion times

hold for the rM/G/1 queue. For example, the expected queue length at service completion

times, is given by the Pollaczek-Khinchine formula [2, Equation (5.3), page 281]

Eq[N1] =

∞∑
k=1

kq(k) = ρ+
λ20E[F (σ1)2]
2(1− ρ)

, (15)
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where the subscript q of E denotes that the Markov chain N is run in its stationary distri-

bution, and the moment generating function of the stationary distribution is [2, (5.8), page

283]:

Eq[e
sN1 ] =

∞∑
k=1

eskq(k) =
(1− ρ)(1− s)ψp(s)

ψp(s)− s
(16)

where ψp is the moment generating function of the increments of N :

ψp(s) = E
[
eλ0(1−s)σ̄1

]
= E

[
eλ0(1−s)F (σ1)

]
.

Stationary distribution at arrival times Let SA
n be the sequence of arrival times to the

system. Then (NA
n ,RA

n ) = (NSA
n
− 1, RSA

n
) is the embedded Markov chain of X representing

the state of the system just before arrivals. The fact that the queueing process X changes

in increments of 1 and −1 exactly at arrival and service completion times imply that, under

the stability assumption (14), the process NA will also have stationary distribution q, the

stationary distribution of N . For details of similar arguments we refer the reader to [2,

Theorem 4.3, page 278] or [8, Section 5.3].

4 Stationary distribution in continuous time

One of the key properties ofM/G/1 systems is that their stationary queue length distribution

at service completion times is equal to the same distribution under their continuous time

stationary measure. We will see in Corollary 2 below that the rM/G/1 system does not

possess this property, hence the continuous time stationary measure and related performance

measures (such as the average waiting time) for the rM/G/1 queue have to be computed

separately. This is the goal of the present section. The following verification argument will

give us the stationary distribution of X:

1. Derive the balance equation for the stationary distribution,

2. Solve the balance equation,

3. Invoke [5, Proposition (34.7), page 113] to show that the solution is indeed the station-

ary measure of X (see Proposition 8 below).
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For a measure µ on E and k ∈ {1, 2, 3, ...}, we say that µ has density m on Ek, if

µ(A ∩ Ek) =
∫∞
0 1A((k, r))m(r)dr, for any measurable A ⊂ E. Define

M
.
= {µ : is a measure on E having density m(k, ·) on Ek, k = 1, 2, 3, ...}.

The balance equation for the stationary distribution is

A∗(µ)(x) = 0, x ∈ E. (17)

where A∗ is the conjugate operator (acting on measures µ ∈ M ) of the generator operator

A:

A∗(µ)(x) =


d
drm(k, r) + λ0f(r)(m(k − 1, r)−m(k, r)) +m(k + 1, 0)g(r), k > 1, r > 0

d
drm(1, r) + λ0µ(0)g(r) +m(2, 0)g(r)− λ0f(r)m(1, r), r > 0

m(1, 0)− µ(0)λ0.

(18)

The goal of this section is to show that (up to scaling) there is a unique solution µ∗ to the

balance equation (17) and this solution is the stationary measure of the continuous time

rM/G/1 process X.

Keep µ∗(0) > 0 as a free parameter to be fixed below. The third line of (18) gives

A∗(µ∗)(0) = µ∗(0)λ0 −m∗(1, 0) = 0

m∗(1, 0) = µ∗(0)λ0. (19)

The last equality and the second line of (18) imply that (17) reduces to the following equation

for m(1, ·):

d

dr
m(1, r) + g(r)(m∗(1, 0) +m∗(2, 0))− λ0f(r)m(1, r) = 0, r > 0. (20)

The classical linear ODE theory implies that the unique solution of (20) vanishing at ∞ is

m∗(1, r) = (m∗(1, 0) +m∗(2, 0))

∫ ∞

r
g(u)e(F (r)−F (u))λ0du, (21)

13



Substituting r = 0 gives the following formula for m∗(2, 0):

m∗(1, 0) = (m∗(1, 0) +m∗(2, 0)) p(0) (22)

or

m∗(2, 0)
.
=

1− p(0)

p(0)
m∗(1, 0) > 0, (23)

where,

p(0) =

∫ ∞

0
g(r)e−F (r)λ0dr,

is the 0 increment probability of the embedded Markov chain N , given in (10). That

m∗(2, 0) > 0 implies m∗(1, ·) > 0. Next derive a second expression for m∗(2, 0) by inte-

grating both sides of (21) over [0,∞):

∫ ∞

0
m∗(1, r)f(r)dr = (m∗(1, 0) +m∗(2, 0))

∫ ∞

0
f(r)

∫ ∞

r
g(u)e(F (r)−F (u))λ0dudr

= (m∗(1, 0) +m∗(2, 0))
1

λ0
(1− p(0)),

where we have used Fubini’s theorem, m(1, ·) > 0 and the change of variable s = F (r). The

definition (23) of m∗(2, 0) implies m∗(1, 0) = p(0)
1−p(0)m

∗(2, 0); substituting this in the last line

above gives

m∗(2, 0) = λ0

∫ ∞

0
m∗(1, r)f(r)dr (24)

Formulas (19), (21) and (23) uniquely determinem∗(1, ·) andm∗(2, 0) given µ∗(0). For k > 1,

(17) uses the first line of (18):

d

dr
m(k, s) + λ0f(r)(m(k − 1, s)−m(k, s)) +m(k + 1, 0)g(r) = 0, r > 0. (25)

The unique solution of this linear equation for k = 2 decaying at ∞ is

m∗(2, r) = m∗(3, 0)

∫ ∞

r
g(u)e(F (r)−F (u))λ0du+ λ0

∫ ∞

r
e(F (r)−F (u))λ0m∗(1, u)f(u)du, (26)

14



where m∗(3, 0) is yet to be determined. To determine it set r = 0 in the above display to get

m∗(3, 0) =
1

p(0)

(
m∗(2, 0)− λ0

∫ ∞

0
e−F (u)λ0m∗(1, u)f(u)du

)
; (27)

With this, m∗(2, ·) and m∗(3, 0) are determined uniquely, given µ(0). (24) and the definition

of m∗(3, 0) imply m∗(3, 0) > 0, which in its turn implies m∗(2, ·) > 0.

Letting r → ∞ in (26) gives limr→∞m∗(2, r) = 0. This and the integration of (25) on

[0,∞) gives

−m∗(2, 0) + λ0

∫ ∞

0
m∗(1, r)f(r)dr − λ0

∫ ∞

0
m∗(2, r)f(r)dr +m∗(3, 0) = 0.

This and (24) now imply a similar equation for m∗(3, 0):

m∗(3, 0) = λ0

∫ ∞

0
m∗(2, r)f(r)dr. (28)

For k > 2, one solves (25) inductively, using k = 2 as the base case to get the following

sequence of unique positive solutions of (25) vanishing at ∞:

m∗(k + 1, 0)
.
=

1

p(0)

(
m∗(k, 0)− λ0

∫ ∞

0
e−F (u)λ0m∗(k − 1, u)f(u)du

)
(29)

m∗(k, r)
.
= m∗(k + 1, 0)

∫ ∞

r
g(u)e(F (r)−F (u))λ0du (30)

+ λ0

∫ ∞

r
e(F (r)−F (u))λ0m∗(k − 1, u)f(u)du,

r > 0, and the solution satisfies

m∗(k + 1, 0) = λ0

∫ ∞

0
f(r)m∗(k, r)dr.

The last formulas are the extension of (26) and (27) to k > 2. Let us note the foregoing

computations as a proposition:

Proposition 5. Given µ∗(0) > 0, the balance equation (17) has a unique positive solution

15



µ∗ given by (19), (21), (23) for k = 1 and (26), recursively, for k ≥ 2. The solution satisfies

m∗(k + 1, 0) = λ0

∫ ∞

0
m∗(k, r)f(r)dr (31)

for k ≥ 1.

The next proposition links the quantities m∗(k, 0) to the stationary distribution of the

embedded chain N :

Proposition 6. Let µ∗ = (µ∗(0),m∗(k, ·), k = 1, 2, 3, ...) be the unique solution (up to the

choice of µ∗(0) > 0) of the balance equation (17) derived in Proposition 5 above. Then the

measure

m∗ .
= (m∗(1, 0),m∗(2, 0),m∗(3, 0), · · · )

on N+ is M -invariant, i.e.,

m∗M = m∗ (32)

and

m∗ = cq (33)

for some c > 0 where q is the stationary measure given in (13). In particular,

∞∑
k=1

m∗(k, 0) <∞ (34)

if the stability assumption (14) holds.

Proof. By definition (9) of the matrix M (32) is the following sequence of equations:

p(n)(m∗(1, 0) +m∗(2, 0)) +
n+1∑
k=2

m∗(k + 1, 0)p(n+ 1− k) = m∗(n+ 1, 0), (35)

n = 0, 1, 2, 3, ... For n = 0, (35) reduces to (22), which holds by definition. To prove (35) for

n > 0, multiply both sides of (20) by e−F (r)λ0 (F (r)λ0)n

n! , integrate from 0 to ∞ to get

0 =

∫ ∞

0

d

dr
m∗(1, r)e−F (r)λ0

(F (r)λ0)
n

n!
dr + (m∗(1, 0) +m∗(2, 0))p(n)

− λ0

∫ ∞

0
m∗(1, r)e−F (r)λ0

(F (r)λ0)
n

n!
f(r)dr.
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Integration by parts on the first integral gives:

0 = (m∗(1, 0) +m∗(2, 0))p(n)− λ0

∫ ∞

0
e−F (r)λ0

(F (r)λ0)
n−1

(n− 1)!
m∗(1, r)f(r)dr. (36)

For k = 2, ..., n + 1, multiply both sides of (25) by e−F (r)λ0 (F (r)λ0)n+1−k

(n+1−k)! and integrate by

parts the first term to get

m∗(k + 1, 0)p(n+ 1− k)+λ0

∫ ∞

0
e−F (r)λ0

(F (r)λ0)
n+1−k

(n+ 1− k)!
m∗(k − 1, r)f(r)dr (37)

− λ0

∫ ∞

0
e−F (r)λ0

(F (r)λ0)
n−k

(n+ 1− k)!
m∗(k, r)f(r)dr = 0.

Summing the last display over k, adding to the result (36) and finally noting (29) give (35)

for n > 0. The Markov chain N is a constrained random walk on Z+ with iid increments

and hence is obviously irreducible and will therefore have (up to scaling) a unique stationary

distribution; (33) follows from this. (34) follows from (33) and Proposition 3.

Define

S(r)
.
=

∞∑
k=1

m∗(k, r),

whose finiteness under the stability assumption follows from (31) and the previous proposi-

tion (see (34)); (31) also implies

λ0

∫ ∞

0
S(r)f(r)dr = S(0)−m∗(1, 0) = S(0)− λ0µ

∗(0). (38)

Remember that µ∗(0) is still a free parameter. The next proposition computes
∫∞
0 S(r)dr

and S(0) in terms of µ∗(0) and in terms of the system parameters.

Proposition 7. Suppose the stability assumption (14) holds. Then

S(0) = λ0
µ∗(0)

1− ρ
. (39)

and ∫ ∞

0
S(r)dr = S(0)ν. (40)

17



Proof. Summing the terms of the balance equation gives S′(r) = −S(0)g(r), therefore,

S(r) = S(0)G(r), (41)

where

G(r)
.
= P (σ1 > r) =

∫ ∞

r
g(u)du. (42)

Integrating both sides of (41) over [0,∞) gives (40). Next multiply both sides by f(r) and

integrate over [0,∞]:

∫ ∞

0
S(r)f(r)dr = S(0)

∫ ∞

0
f(r)G(r)dr = S(0)ν̄,

where we have integrated by parts the middle integral. The last display and (38) imply

λ0S(0)ν̄ = S(0)− λ0µ
∗(0)

S(0) = λ0µ
∗(0)

1

1− ρ
,

which proves (39).

Let us fix the value for µ∗(0) to

µ∗(0) = 1− ρ = q(0); (43)

we will assume (43) whenever the stability assumption (14) is made. This implies by (39)

and (41):

S(0) = λ0, S(r) = λ0G(r). (44)

A second implication is given in the next lemma.

Lemma 1. Let µ∗(0) be fixed as in (43), i.e., we take µ∗(0) = q(0). Then

m∗ = λ0q (45)

where m∗ = (m∗(1, 0),m∗(2, 0), ...) is as in Proposition 6. In particular,

∞∑
k=1

km∗(k + 1, 0) = λ0

∞∑
k=1

kq(k) = λ0Eq[N1]. (46)
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Proof. We know by (33) that m∗ = cq for some c > 0. Because q is a probability measure,

this implies, c =
∑∞

k=1m
∗(k, 0) = S(0), which equals λ0, by (44). This proves (45); (46)

follows from (45).

With µ∗(0) fixed as in (43), the measure µ∗ is determined uniquely via Proposition 5.

Note

µ∗(E) = µ∗(0) +

∫ ∞

0
S(r)dr = 1− ρ+ λ0ν. (47)

where we have used (40), (39) and (43). Thus, in general, with µ∗(0) fixed as in (43),

µ∗(E) ̸= 1- to get a proper probability measure, renormalize µ∗:

µ∗1
.
= µ∗/µ∗(E).

Proposition 8 below proves that µ∗1 is the unique stationary measure of the rM/G/1 process

X under the stability assumption (14). The proof will require a subclass of functions in

D(A) that can separate measures in M . The following lemma identifies such a class.

Lemma 2.

S
.
= {h ∈ D(A), sup

x∈E
|h′(x)| <∞, sup

x∈E
|h(x)| <∞}

is a separating class of functions for measures in M .

Proof. For µ1, µ2 ∈ M , µ1 = µ2 if and only if

∫ b

a
m1,k(r)dr =

∫ b

a
m2,k(r)dr

for all 0 < a < b < ∞ and k > 0 (m1,k and m2,k are densities of µ1 and µ2 on Ek). Define

the standard mollifier

η(x)
.
=


Cηe

1
|x|1−1 , |x| < 1

0, |x| > 1,

where Cη > 0 is such that
∫ 1
−1 η(x)dx = 1. For any interval (a, b), 0 < a < b define

hn : E → [0, 1], 1/m < 1/2a as follows: for x = (j, r) ∈ E, j < k hn(x) = 0. For x = (k, r)

hn(x) = n

∫ 1

−1
η(u/n)1(a,b)(u+ r)dr, j = k. (48)
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For j > k we proceed recursively:

hn(j, 0) =

∫ ∞

0
hn(j − 1, r)g(r)dr, hn(j, r) = hn(j, 0)n

∫ 1

nr−1
η(x/n)dx, (49)

where we write hn(j, 0) instead of hn((j, 0)) to simplify notation. By its definition, hn ∈ S

and limn→∞ hn(k, r) = 1{(k,r),r∈(a,b))} almost surely for any measure µ ∈ M , this and the

bounded convergence theorem imply

lim
n→∞

∫
E
hn(x)µ(dx) =

∫ b

a
m(k, r)dr.

This proves that functions of the form hn and (therefore the class S containing them) is a

separating class for measures in M .

It remains to show that hn ∈ D(A). The following three conditions for this are listed

in Subsection 2.1: 1) hn must be absolutely continuous, this follows from its definition (48)

and (49) 2) hn must satisfy hn((j, 0)) =
∫∞
0 hn(j− 1, r)g(r)dr; this again holds by definition

and 3) Bhn ∈ Lloc
1 (X); this follows from the fact that hn is bounded.

Proposition 8. If the stability assumption (14) holds then µ∗1 is the unique stationary mea-

sure of the process X. In particular if X0 has distribution µ∗1, Xt has the same distribution

for all t > 0.

Proof. The uniqueness follows from the uniqueness claim of Proposition 5. By [5, Proposition

(34.7), page 113], µ∗1 is the stationary distribution of X if

∫
Ah(x)µ∗1(dx) = 0; (50)

for a class of functions h ∈ D(A) that forms a separating class for measures in M to which

µ∗1 belongs; by Lemma 2 S ⊂ D(A) is such a class. Thus, to prove the proposition it suffices

to prove (50) for h ∈ S . By definition,

∫
Ah(x)µ∗1(dx) =

1

µ∗(E)

∫
Ah(x)µ∗(dx),

20



and one can directly work with the measure µ∗ rather than the normalized µ∗1. For any h ∈ S

∫
E
Ah(x)µ∗(dx) = lim

N→∞

N∑
k=1

∫ ∞

0

(
−dh
dr

(k, r) + λ0f(r)(h(k + 1, r)− h(k, r))

)
m∗(k, r)dr

(51)

We begin by an integration by parts:

N∑
k=1

∫ ∞

0

(
−dh
dr

(k, r) + λ0f(r)(h(k + 1, r)− h(k, r))

)
m∗(k, r)dr

=

N∑
k=1

∫ ∞

0

(
dm∗

dr
(k, r)− h(k, 0)m∗(k, 0) + λ0f(r)(h(k + 1, r)− h(k, r))

)
m∗(k, r)dr

h(k, 0) =
∫∞
0 g(r)h(k − 1, r)dr because h ∈ D(A), therefore,

=

N∑
k=1

∫ ∞

0

(
dm∗

dr
(k, r)− g(r)h(k − 1, r)m∗(k, 0) + λ0f(r)(h(k + 1, r)− h(k, r))

)
m∗(k, r)dr

Rearrange the terms in the sum to factor out the common h(k, r):

=

N∑
k=1

∫ ∞

0

(
dm∗

dr
(k, r)− g(r)m∗(k + 1, 0) + λ0f(r)(m

∗(k − 1, r)−m∗(k, r))

)
h(k, r)dr

+

∫ ∞

0
m∗(N, r)f(r)λ0h(N + 1, r)dr

Now A∗µ∗ = 0 implies

=

∫
m∗(N, r)f(r)λ0h(N + 1, r)dr;

the last integral goes to 0 withN because
∫
m∗(N, r)f(r)dr → 0 and h is bounded. Therefore,

the limit on the right side of (51) is 0. This proves (50) and establishes that µ∗ is the unique

stationary distribution of the process X.

The last proposition and Proposition 8 give

Corollary 2. The stationary probability of an empty system in continuous time for a stable

rM/G/1 queue is

µ∗1(0) =
µ∗(0)

µ∗(E)
=

1− ρ

1− ρ+ λ0ν
.
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4.1 Expected queue length

As Corollary 2 demonstrates, the probability of a stable rM/G/1 being empty under its

continuous time stationary distribution does not in general equal the same probability under

its stationary distribution at service completion or arrival times:

Pµ∗
1
(Nt = 0) = µ∗1(0) =

1− ρ

1− ρ+ λ0ν
̸= q(0) = 1− ρ.

Thus, in general, the steady state queue length distribution of a stable rM/G/1 system in

continuous time differs from the same distribution at service completion and arrival times.

The following proposition gives a formula for Eµ∗
1
[N1],under µ

∗
1, the expected queue length

under the stationary distribution in continuous time; in general, this quantity will not equal

Eq[N1], the expected queue length under the stationary distribution at service completion

times.

Proposition 9. The expected rM/G/1 queue length under its continuous time stationary

measure equals

Eµ∗ [Nt] =
1

µ∗(E)

(
λ20

∫ ∞

0

(∫ x

0
uf(u)du

)
g(x)dx+ ((1− ρ) + Eq[N1])λ0ν

)
(52)

where Eq[N1] is the stationary mean queue length at service completion times whose formula

is given in (15).

Proof. The proof proceeds parallel to that of Proposition 7. Set

φ(r)
.
=

∞∑
k=1

m∗
k(r)k; (53)

by definition

Eµ∗
1
[Nt] = Eµ∗ [Nt]/µ

∗(E) =
1

µ∗(E)

∫ ∞

0
φ(r)dr. (54)

Let us compute
∫∞
0 φ(r)dr. Multiply the first and the second lines of the balance equation

(17) by k, k = 1, 2, 3, 4, ... and sum over k to get

dφ

dr
(r) + λ0f(r)S(r) +

(
µ∗(0)λ0 +

∞∑
k=1

m∗
k+1(0)k

)
g(r) = 0, (55)
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where, as before,

S(r) =

∞∑
k=1

m∗
k(r) = S(r) = λ0G(r);

the last equality follows from (44). (43) and (46) simplify the terms in paranthesis in (55)

to (
µ∗(0)λ0 +

∞∑
k=1

m∗
k+1(0)k

)
= λ0 ((1− ρ) + Eq[N1]) ,

where Eq[N1] is the stationary mean queue length at service completions. Then, the unique

solution of (55) vanishing at ∞ is

φ(r) = λ20

∫ ∞

r
f(u)G(u)du+ ((1− ρ) + Eq[N1])λ0G(r).

Integrating the last display over r over [0,∞] yields

∫ ∞

0
φ(r)dr = λ20

∫ ∞

0

∫ ∞

r
f(u)G(u)dudr + ((1− ρ) + Eq[N1])λ0ν

= λ20

∫ ∞

0

(∫ x

0
uf(u)du

)
g(x)dx+ ((1− ρ) + Eq[N1])λ0ν.

This and (54) give (52).

4.2 Average arrival rate

The random variable

An
.
= Nn+1 −Nn + 1,

represents the number of arrivals to the rM/G/1 system between the nth and (n+1)st service

completions. It follows from (58) that its conditional distribution given in Nn is

P ( An = j|Nn) =


p(j), Nn > 0

p(j + 1), Nn = 0,

(56)

It follows from the Markov property of N that (N ,A) is a Markov chain and is stationary

whenever N is, with stationary distribution

P (A∞ = j,N∞ = k) =


p(j)q(k), k > 0

p(j + 1)q(0), k = 0.
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Then by the ergodic theorem for stable Markov chains

lim
n→∞

1

n

∞∑
n=1

An = q(0)

1 +

∞∑
j=1

jp(j)

+ (1− q(0))

 ∞∑
j=1

jp(j)


= q(0) + ρ = 1− ρ+ ρ = 1. (57)

Define the interservice time

τn
.
= Sn+1 − Sn;

similar to the sequence An the distribution of τn is completely determined by N with the

following conditional distribution:

P (τn > t|Nn) =


G(t), Nn > 0∫∞
0 λ0e

−λ0sG((t− s)+)ds, Nn = 0,

(58)

where the second distribution is the convolution of g and the exponential distribution with

rate λ0 (this is the distribution of the sum of a service time and the first arrival time to the

system). The process (N , τ) is stable whenever N is, with the stationary distribution

P (τ∞ > t,N∞ = k) =


G(t)q(k), k > 0,(∫∞

0 λ0e
−λ0sG((t− s)+)ds

)
q(0), k = 0.

The law of large numbers for Markov chains [16, Theorem 17.0.1, page 422] implies

lim
n→∞

1

n

∞∑
n=1

τn = lim
n→∞

1

n
Sn = q(0)

(
1

λ0
+ ν

)
+ (1− q(0))ν

= q(0)
1

λ0
+ ν = (1− ρ)

1

λ0
+ ν. (59)

Proposition 10. Let At denote the number of arrivals to an rM/G/1 queue up to time t.

Then the ergodic average arrival rate to the rM/G/1 system equals

lim
t→∞

A(t)

t
= α

.
=

λ0
1− ρ+ λ0ν

=
λ0

µ∗(E)
. (60)
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Proof.

lim
n→∞

ATn

Tn
=
ATn/n

Tn/n
=

λ0
1− ρ+ λ0ν

(61)

follows from (57) and (59). For any other sequence tm ↗ ∞ we know that there exists

a sequence nm with Tnm < tm < Tnm+1. Borel Cantelli Lemma and that An has finite

moments independent of n imply

lim
n→

An

Tn
= 0. (62)

It follows from the monotonicity of Tn and An that

ATnm

Tnm+1
≤ Atm

tm
≤
ATnm+1

Tnm

.

This, (62) and (61) imply (60).

4.3 Average sojourn and waiting time

Let ςk be the sojourn time (the total amount of time spent) of the kth customer arriving to

the system. Little’s law is the following statement

lim
n→∞

1

n

n∑
k=1

ςk =
limt→Nt/t

limt→∞At/t
. (63)

The classical proof of this result outlined in [14] depends on the distribution of X only to

the following extent: that N represents the number of customers in a single server queueing

system and that the ergodic limits related to N and A; the existence of the ergodic limits

follow from the stationarity of N (see, e.g., [3, Theorem 1.6.4, page 50]) and Proposition

10 above. Therefore, the classical proof requires no change for the current setup. For the

rM/G/1 system, (63) and Proposition 10 give the following formula for the average sojourn

time:

lim
n→∞

1

n

n∑
k=1

ςk =
Eµ∗

1
[Nt]

α

= λ0

∫ ∞

0

(∫ x

0
uf(u)du

)
g(x)dx+ ((1− ρ) + Eq[N1]) ν. (64)
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This gives the following formula for the average waiting time

ω
.
= λ0

∫ ∞

0

(∫ x

0
uf(u)du

)
g(x)dx+ ((1− ρ) + Eq[N1]) ν − ν (65)

= λ0

∫ ∞

0

(∫ x

0
uf(u)du

)
g(x)dx+ (Eq[N1]− ρ) ν,

where Eq[N1] can be computed with formula (15).

4.4 Connection to M/G/1 queue in continuous time

By Corollary 1 we know that the embedded random walk N at service completions of the

rM/G/1 queue has identical dynamics to that of anM/G/1 queue with constant rate λ0 and

sequence of service times {F (σ1), F (σ2), ....}- which implies that that these systems have the

same stationary measures at service completions. Then a natural question is whether there

is a similar correspondence between the continuous time stationary distributions. When f

takes the value 0 over a nonzero interval its integral F becomes not-invertible. Because of

this, in general, the continuous time stationary distribution of the M/G/1 system cannot

completely be mapped to that of the rM/G/1 system (remember that σi has density g; when

f = 0 is allowed F (σi) may have no density and F (σi) may have compact support even when

σ takes values in all of R+). However, for f > 0 an exact mapping between the stationary

measures is possible; the details follow.

Assuming f > 0 implies F (r) =
∫ r
0 f(u)du is strictly increasing. Let H denote its inverse

function; that F is differentiable implies the same for H and the inverse function has the

derivative
dH

ds
(s) =

1

f(H(s))
. (66)

Define

ḡ(s)
.
= g(H(s))

dH

ds
(s) =

g(H(s))

f(H(s))
, s > 0.

For f > 0, the change of variable formula of calculus implies that F (σi) has density ḡ. The

same formula allows one to rewrite the operator A∗ defining the balance equations of the
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rM/G/1 system in the s = F (r) variable thus:

Ā∗(µ)(x) =


d
dsm(k, s) + λ0(m(k − 1, s)−m(k, s)) +m(k + 1, 0)ḡ(s), k > 1, s > 0,

d
dsm(1, s) + ḡ(s)λ0µ(0) + ḡ(s)m(2, 0)− λ0m(1, s), s > 0,

µ(0)λ0 −m(1, 0),

(67)

µ ∈ M . The equation

Ā∗(µ) = 0 (68)

is the balance equation of the M/G/1 system with rate λ0 and service density ḡ. Let us

denote the continuous time process representing this M/G/1 system by X̄ (which can be

written in the PDP framework employed in Section 2). The relation between the solution of

(68) and the solution of the balance equation (17) is given in the following proposition.

Proposition 11. Assume f > 0. Let µ∗ be the solution of (17) given in Proposition 5.

Then µ̄∗ ∈ M defined by µ̄∗(0)
.
= µ̄∗(0) and by the densities m̄∗(k, s)

.
= m∗(k,H(s)) on Ek,

k = 1, 2, 3, ... solves (68) and does so uniquely up to the choice of µ̄∗(0). Furthermore, if the

stability condition 14 holds and µ̄∗(0) is set to 1−ρ we have µ̄∗(E) = 1 and µ̄∗ is the unique

continuous time stationary measure of X̄.

Proof. A∗(µ∗) = 0 ⇒ Ā∗(µ̄∗) = 0 follows from the chain rule. The uniqueness claim follows

from the linearity of (68). That µ̄∗(E) = 1 under the assumptions (14) and µ̄∗(0) = 1 − ρ

follows from the following observation:

µ̄∗(Ek) =

∫ ∞

0
m̄∗(k, s)ds =

∫ ∞

0
m∗(k, r)f(r)dr = q(k), k > 0;

the first equality follows from the change of variable r = H(s) and the last equality follows

from (31) and (45). That µ̄∗ is the stationary measure of X̄ is proved exactly as in the proof

of Proposition 8.

5 Illustration

Let us now observe the consequences of the results derived in the previous section over

two examples. Figure 2a shows the average waiting times for three rM/G/1 systems with

uniformly distributed service time on the interval [0, 1], as a function of the arrival rate λ0.
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Figure 2: Average waiting time as a function of the average arrival rate for different reshaping
functions

We consider three cases for the reshaping function f ; increasing, constant and decreasing

in r: f(r) = 3
4(2 − 2r)1(0,1)(r), f(r) = 1(0,1)(r) and f(r) = 3r1(0,1)(r) (the constant case

corresponds to the M/U/1 queue). All of these reshape functions f satisfy (1), therefore

they all have the same average arrival rate α = λ0, utilization ρ = λ0/2 and empty system

probability µ∗(0) = q(0) = 1 − ρ. Moreover for all of these reshape functions f and the

assumed system parameters, the formula (65) for the average waiting time has simple explicit

expressions, for f(r) = 3
4(2− 2r)1(0,1)(r),

ω = ω1 =
λ0
8

+
3λ20

40(1− ρ)
,

for f(r) = 1(0,1)(r) (this is the M/U/1 case)

ω = ω2 =
λ0
6

+
λ20

12(1− ρ)
.
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and for f(r) = 3r1(0,1)(r),

ω = ω3 =
λ0
4

+
9λ20

80(1− ρ)
.

We note ω1 < ω2 < ω3 for all λ0 such that ρ < 1: i.e., pushing arrivals towards service

completions (while keeping the average arrival rate constant) reduces average waiting times.

Figure 2a shows the graphs of these functions as λ0 varies.

Let us now consider an example in which the service time is exponentially distributed

mean ν = 1 and the reshaping function f(r) = (1 − e−t)−110≤r≤t; this function restricts

arrivals to the last t units of time of service and it satisfies (1). The average waiting time ω

of (65) reduces for this case to

ω(t, λ0) = λ0
1− e−t(t+ 1)

1− e−t

(
1 +

λ20
(1− e−t)(1− ρ)

)
;

ω is increasing in t, i.e., once again, concentrating arrivals near service completions (while

keeping the average arrival rate constant) reduces the average waiting time. Figure 2b, shows

the graph of ω(t, ·) for t = 1, 2 and t = ∞ (the last corresponds to an M/M/1 queue).

We conclude this section with the following observation from our second example: set

t = 3ν = 3 in the last example, i.e., we restrict arrivals to the interval [0, 3ν], where ν is the

mean service time. For λ0 = 0.7, the system’s utilization is ρ = 0.7 and the corresponding

average waiting time turns out to be ω(3, 0.7) = 1.6041; the same waiting time for the

same parameter values but without reshaping is ω(∞, 0.7) = 1.84. Thus, this not so heavy

reshaping reduces average waiting time by 13%.

6 Conclusion

Let us comment briefly on possible future research. We have assumed that the service

time distribution has a density g. The analysis at service completions doesn’t depend on

this assumption and the results of Subsection 2.2 and Section 3 continue to hold without

change when σi doesn’t have a density. The analysis of Section 4 does make use of the

assumption that σi has a density but the resulting performance measure formulas (average

queue length, probability of an empty system, average waiting time) remain meaningful even

when σi doesn’t have a density and one expects these results to hold under general service

distributions. One simple method of extending our analysis to the general case would be first
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a smooth approximation of the given service distribution and then taking weak limits. The

details of such an argument could be given in future work. The special case of a deterministic

constant service time case can be directly handled by appropriate modifications of the balance

equation and our arguments based on it.

A natural question is the convergence of the distribution of Xt to the stationary distri-

bution µ∗. As one of the referees pointed out, one way to establish this with precise rates of

convergence would be to apply the approach of [15] based on coupling (at the first hitting

time to 0) and monotonicity arguments. Future research could attempt to give details of

this.

In many situations, one may only have an estimate of the remaining service time (rather

than the ability to directly observe it, as assumed in the current work). One possible future

work is the modeling and analysis of such a setup. We think that, given the possible appli-

cations in call centers, another natural direction is the treatment of many servers. Instead

of allowing the rate to depend directly on the remaining service times of all of the servers a

possibility is to allow it to depend on a function of them (e.g., their minimum or an estimate

of it). Finally, it may also be of interest to apply the approach used in the present article

to models where the arrival and service rates depend on the queue length as well as the

remaining service time.
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